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SoleÂr’s Theorem and Characterization of Inner
Product Spaces
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Using SoleÁ r’ s result, we show that the existence of at least one finitely additive
probability measure on the system of all orthogonally closed subspaces of S
which is concentrated on a one-dimensional subspace of E can imply that E is
a real, complex, or quaternionic Hilbert space. In addition, using the concept of
test spaces of Foulis and Randall and introducing various systems of subspaces
of E, we give some characterizations of inner product spaces which imply that
E is a real, complex, or quaternionic Hilbert space.

1. INTRODUCTION

The space of all closed subspaces +(H ) of a Hilbert space H over the

field of all real numbers R, complex C, or quaternionic numbers H plays a
crucial role in the axiomatic foundations of quantum mechanics (Mackey,

1963; Varadarajan, 1968; Piron, 1976). Many attempts have been made to

characterize orthomodular lattices (OML) ( 5 quantum logics) to be isomor-

phic with +(H ).

Many specialists have thought that properties such as atomicity, the

exchange axiom, infinite-dimensionality, and the irreducibility of a complete
orthomodular lattice are characteristics only of +(H ). Therefore, a result of

Keller (1980) was a great surprise for quantum logicians when he presented

an OML with all the above properties which cannot be embedded into +(H )

for any H.
Let K be a division ring with charK Þ 2 and with an involution*: K ®

K such that ( a 1 b )* 5 a * 1 b *, ( a b )** 5 b * a *, a ** 5 a for all a , b P
K. Let E be a (left) vector space over K equipped with a Hermitian form
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( ? , ? ): E 3 E ® K, i.e., ( ? , ? ) satisfies, for all x, y, z P E and all a , b P K,

( a x 1 b y, z) 5 a (x, z) 1 b ( y, z), (x, a y 1 b z) 5 (x, y) a * 1 (x, z) b *, (x, y)

5 ( y, x)*. The triplet (E, K, ( ? , ? )) is said to be an inner product space (a
generalized inner product space) or a quadratic space if (x, y) 5 0 for any

y P E implies x 5 0, and unless confusion threatens, we usually refer to E
rather than to (E, K, ( ? , ? )).

Let E be an inner product space, i.e., E is a vector space over a division

ring K with a Hermitian form ( ? , ? ). For any subset M # E, we put M ’ 5
{x P E: (x, y) 5 0 for any y P M }. Let +(E ) denote the family of all
orthogonally closed subspaces of E, i.e.,

+(E ) 5 {M # E:M ’ ’ 5 M }

and let %(E ) denote the set of all splitting subspaces of E, i.e.,

%(E ) 5 {M # E: M ’ 1 M 5 E }

Then

%(E ) # +(E )

and E is said to be orthomodular iff +(E ) # %(E ).

The Amemiya±Araki±Piron result (Amemiya and Araki, 1966/67) says
that a real or complex inner product space E is complete iff +(E ) is an

orthomodular lattice, or equivalently, iff E is an orthomodular space. An

orthomodular space is anisotropic, i.e., (x, x) 5 0 implies x 5 0, and then

%(E ) 5 +(E ).

Keller’ s (1980) result is the first example of non-Hermitian orthomodular

inner product space over a non-Archimedian ordered ring. Important contribu-
tions are also Morash’ s (1973) notion of an angle-bisecting system and ones

made by Gross and his school (see, e.g., Gross, 1990).

Recently Maria Pia SoleÁ r (1995) has presented a very nice and surprising

result that any infinite-dimensional orthomodular space containing a sequence

of orthonormal vectors is either a real, complex, or quaternionic Hilbert space.

Today there are plenty of characterizations of completeness of real or
complex inner product spaces using algebraic, topological, and measure-

theoretic aspects. The former criterion was first presented by Hamhalter and

PtaÂk (1987) showing that a real, separable, complex inner product space E
is complete iff +(E ) possesses at least one s -additive probability measure.

This result has been generalized by the present author to different families

of subspaces of E (real or complex), and a survey of different types of
completeness criteria can be found in DvurecÆenskij (1993).

We show that the existence of at least one finitely additive probability

measure on +(E ) which is concentrated on a one-dimensional subspace of

E can imply that E is a real, complex, or quaternionic Hilbert space. We
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recall that Keller’ s examples also possess measures with different ampleness,

but they do not entail that K P {R, C, H }.

In addition, using the concept of test spaces of Foulis and Randall (1972)
and introducing families of subspaces of E, we give some characterizations

of inner product spaces which imply that E is a real, complex, or quaternionic

Hilbert space.

2. MEASURE-THEORETIC CRITERION

A mapping m: +(E ) ® [0, 1] (m: %(E ) ® [0, 1]) such that

m (E ) 5 1

m ( ~
i P I

M i ) 5 o
i P I

m (M i ) (1)

whenever {M i}i P I is a system of mutually orthogonal elements from +(E )

[from %(E ) having the join ~ i P I M i in %(E )] is said to be a finitely additive
state, a s -additive state, or a completely additive state if (1) holds for any

finite, countable, or arbitrary index set I.
The following measure-theoretical criterion was proved in DvurecÆenskij

(1997); we recall that we do not know (see also Hamhalter and PtaÂk, 1987)
whether +(E ) possesses at least one finitely additive state when E is an

incomplete real or complex inner product space.

Theorem 2.1. Let K be a division ring with an involution *, let E be an
infinite-dimensional space over K, and let ( ? , ? ) be a Hermitian form on E 3
E such that in any direction there is a unit vector, i.e., for any x P E, x Þ
0, there exists an a P K with ( a x, a x) 5 1. Let m be a finitely additive state

on +(E ) such that there exists a unit vector x0 P E with the property m (M )

5 1 if and only if x0 P M. Then K P {R, C, H }, E is a Hilbert space over

K, and m is a completely additive state.

The following example gives a case with a quite full system of finitely

additive states which, however, is not a Hilbert space; a similar example can be

presented when we have any incomplete real or complex inner product spaces.

Example 2.2. Let Q be the set of all rational numbers. Denote by Qf

the set of all infinite sequences q 5 (q1, q2, . . .) from Q ` such that all

coordinates of (q1, q2, . . .) are nonzero unless finitely many of them. Then

Qf is an infinite-dimensional vector space over the field Q with the involution
l j l , l P Q. The bilinear form (q, p) 5 S `

i 5 1 qipi , where q 5 (q1, q2,

. . .), p 5 ( p1, p2, . . .), P Qf is a Hermitian one, and (Qf, Q, ^ ? , ? & ) is an

anisotropic inner product space. The system {ei}
`
i 5 1, where ei is a vector from

Qf having on the i-place 1 and otherwise 0’ s, is an orthonormal sequence.
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Define f0 5 e1, fn 5 S n
i 5 1 ei 2 nen+1 for any n $ 1. Then ^ f0, fj & 5 1

for all j $ 0, ^ fi , fj & 5 0 for all i Þ j, ^ fj , fj & 5 j 1 j 2 for all j $ 1. Put

M 5 sp( f1, f3, f5, . . .), N 5 sp( f2, f4, f6, . . .), H 5 sp( f1, f2, f3, . . .). Then M
5 N ’ , N 5 M ’ , so that M, N P +(Qf) \%(Qf) and H ’ 5 {0}. Consequently,

%(Qf) is neither a s -orthomodul ar poset nor a lattice (Piziak, 1992, Ex. 2.4).

In Qf, there are directions having no unit vectors, e.g., (1, 1, 0, 0, 0 . . .). In

addition, there are also vectors (1, 1, 1, 0, 0, 0 . . .) and (2, 1, 1, 0, 0, . . .)

having no angle-bisecting vector (for definitions see Morash, 1973).

On the other hand, for any nonzero vector x P Qf, the mapping mx:
%(Qf) ® [0, 1] defined via

mx(M ) 5
^ xM, xM &

^ x, x &
, M P %(Qf)

where x 5 xM 1 xM ’ and xM P M, x,M ’ P M ’ , is a finitely additive state

on %(Qf) concentrated on sp(x). In particular, we have

mx(sp( f )) 5
^ f, x & 2

^ f, f & ^ x, x &

for any nonzero f P Qf.

In addition, {mx: x P Qf \ {O}} is a quite full system of states on %(Qf ).

3. TEST SPACES

Foulis and Randall (1972) presented mathematical foundations of opera-
tional probability theory and statistics based upon a generalization of the

conventional notion of a sample space. They generalize the approach of

Kolmogorov (1930).

Let X be a nonvoid set; elements of X are called outcomes. We say that

a pair (X, 7) is a test space iff 7 is a nonempty family of subsets of X such

that (i) for any x P X, there is a T P 7 containing x, and (ii) if S, T P 7
and S # T, then S 5 T.

Any element of 7 is said to be a test. We say that a subset of G of X
is an event iff there is a test T P 7 such that G # T. Let us denote the set

of all effects in X by % 5 %(X, 7). We say that two events F and G are (i)

orthogonal to each other, in symbols F ’ G, iff F ù G 5 0¤, and there is a

test T P 7 such that F ø G # T; (ii) local complements of each other, in
symbols F loc G, iff F ’ G and there is a test T P 7 such that F ø G 5 T;
and (iii) perspective with axis H iff they share a common local complement H.

The test space (X, 7) is algebraic iff, for F, G, H P %, F ’ G and F
loc H entail G loc H.
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For algebraic test spaces, ’ is the relation of an equivalence and, for

any A P %(X, 7), we put

p (A) : 5 {B P %(X, 7): B ’ A}

Then the logic of the algebraic test space %(X, 7), i.e., the set

P (X) : 5 { p (A): A P %(X, 7)}

is an orthoalgebra.

If {xi} is a MOS in a splitting subspace M of an anisotropic E, then

~
i

sp(xi ) 5 {xi }
’ ’ 5 M

We say that an inner space E is Dacey if, for any MOS {xi} ø {yj} in

E with {xi} ù {yj} 5 0¤, we have

{xi }
’ ’ 5 {yj }

’

Let E be an inner space and define E0 : 5 E \ {0} and let 7(E0) be the

system of all MOSs in E. Then the pair (E0, 7 (E0)) is a test space, and
denote by %(E0) the system of all events in E0.

For more details on algebraic test spaces on inner spaces see DvurecÆen-

skij (1996).

Theorem 3.1. Let E be an anisotropic inner space. Then the test space

(E0, 7(E0)) is algebraic if and only if E is Dacey.

We now introduce the following systems of subspaces of E:
(1) $(E ) 5 {M # E: $ OS {ui}, M 5 {ui}

’ ’ }, is the set of all Foulis±
Randall subspaces, which is a complete orthoposet.

(2) 5(E ) 5 {M # E: M 5 {ui}
’ ’ " MOSs {ui} of M }, which is a poset.

(3) 9(E ) 5 {M # E: M 5 {ui}
’ ’ and M ’ 5 {vj}

’ ’ " MOSs {ui} and

{vj} of M and M ’ }, which is an orthocomplemented poset.

It is easy to see that

%(E ) # 9(E ) # 5(E ) # $(E ) # +(E )

Let } be a system of subspaces of an inner space E. We say that }
has the orthomodular property iff A, B P } with A # B imply B 5 A Ú (B
ù A ’ ).

Theorem 3.2. Let any MOS in an anisotropic inner space E be at most

countable. Then E is orthomodular if and only if $(E ) has the orthomodu-

lar property.

Let M P $(E ); then an element M 8 P $(E ) such that M 8 ’ M and

M Ú M 8 5 E is said to be a local complement of M in $(E ).
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Theorem 3.3. An anisotropic inner space E is Dacey if and only if, for

any M P $(E ), M ’ is a unique local complement of M in $(E ).

Theorem 3.4. An anisotropic inner space E is Dacey if and only if
9(E ) 5 $(E ).

Theorem 3.5. Let any MOS in an anisotropic inner space E be at most

countable. The following statements are equivalent:

1. E is orthomodula r.
2. E is Dacey.

3. (E0, 7(E0) is an algebraic test space.

4. 9(E 5 $(E ).

5. For any M P $(E ), M ’ is the unique local complement of M in $(E ).

6. 5(E ) 5 $(E ).

An anisotropic inner space E is half-normal if there is a sequence
{ei}

`
i 5 1 of mutually orthogonal vectors such that (ei , ei) 5 1 for any i ({ei}i

is called an orthonormal sequence). Using the result of SoleÁ r (1995), we

can prove the following characterization criteria of inner product spaces

(DvurecÆenskij, 1996).

Theorem 3.6. Let E be an infinite-dimensional, half-normal, anisotropic
inner space such that any MOS in E is at most countable. The following

statements are equivalent:

1. E is orthomodula r.

2. E is Dacey.

3. (E0, 7(E0)) is an algebraic test space.
4. 9(E ) 5 $(E ).

5. For any M P $(E ), M ’ is the unique local complement of M in $(E ).

6. 5(E ) 5 $(E ).

7. {ui}
’ ’ P %(E ) for any OS {ui} in E.

8. E is a real, complex, or quaternionic separable Hilbert space, dim

E 5 : 0.

Theorem 3.7. Let E be an anisotropic half-normal inner space, dim

E 5 : 0, and let all MOSs in M 5 {ei}
’ ’ have the same cardinality, where

{ei}
`
i 5 1 is an orthonorma l sequence. The following statements are equivalent:

1. E is orthomodula r.

2. $(E ) has the orthomodular property.
3. E is Dacey.

4. E0, 7(E0)) is an algebraic test space.

5. 9(E ) 5 $(E ).

6. For any M P $(E ), M ’ is the unique local complement of M in $(E ).
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7. 5(E ) 5 $(E ).

8. {ui}
’ ’ P %(E ) for any OS {ui} in E.

9. E is a real, complex, or quaternionic Hilbert space.
This paper is based on a talk given at the Biannual Meeting IQSA ’ 96,

Berlin, July 29±August 3, 1996. This work was supported by the grants 229/

94 and 4033/97 of the Slovak Academy of Sciences.
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